الاستراتيجيات الكاملة لكرة القدم

banner
شرحدرسالأعدادالمركبة(ComplexNumbers) << مسابقة التوقعات << الصفحة الرئيسية الموقع الحالي

شرحدرسالأعدادالمركبة(ComplexNumbers)

2025-08-24 17:22دمشق

مقدمةعنالأعدادالمركبة

الأعدادالمركبةهيأعدادتتكونمنجزئين:جزءحقيقيوجزءتخيلي.يتمالتعبيرعنهابالصيغةالعامةa+biحيث:-aهوالجزءالحقيقي-bهوالجزءالتخيلي-iهيالوحدةالتخيليةحيثi²=-1شرحدرسالأعدادالمركبة

تاريخالأعدادالمركبة

ظهرتفكرةالأعدادالمركبةلأولمرةفيالقرنالسادسعشرعندماحاولعلماءالرياضياتحلمعادلاتلايوجدلهاحلفيمجموعةالأعدادالحقيقية.كانجيرولاموكاردانوأولمنأشارإليهافيعملهعام1545.

شرحدرسالأعدادالمركبة(ComplexNumbers)

شرحدرسالأعدادالمركبة

خصائصالأعدادالمركبة

  1. الجمعوالطرح:(a+bi)±(c+di)=(a±c)+(b±d)i
  2. الضرب:(a+bi)(c+di)=(ac-bd)+(ad+bc)i
  3. القسمة:يتمضربالبسطوالمقامفيمرافقالمقام

التمثيلالهندسيللأعدادالمركبة

يمكنتمثيلالعددالمركبعلىالمستوىالديكارتيحيث:-المحورالأفقييمثلالجزءالحقيقي-المحورالرأسييمثلالجزءالتخيلي-كلعددمركبيقابلنقطةفيهذاالمستوى

شرحدرسالأعدادالمركبة(ComplexNumbers)

شرحدرسالأعدادالمركبة

الصيغةالقطبيةللأعدادالمركبة

يمكنالتعبيرعنالعددالمركببالصيغةالقطبية:z=r(cosθ+isinθ)حيث:-rهوالمقياس(الطول)|z|=√(a²+b²)-θهيالزاوية(الوسيطة)θ=arctan(b/a)

شرحدرسالأعدادالمركبة(ComplexNumbers)

شرحدرسالأعدادالمركبة

تطبيقاتالأعدادالمركبة

  1. فيالهندسةالكهربائيةلتحليلالدوائرالمتناوبة
  2. فيمعالجةالإشاراتوالصور
  3. فيميكانيكاالكم
  4. فيأنظمةالتحكموالملاحة

خاتمة

الأعدادالمركبةتوسعمفهومناللأعدادوتفتحآفاقاًجديدةفيالرياضياتوالعلومالتطبيقية.فهمهايتطلبإدراكالعلاقةبينالجزأينالحقيقيوالتخيليوكيفيةالتعاملمعهممعاًفيالعملياتالحسابيةالمختلفة.

شرحدرسالأعدادالمركبة

الأعدادالمركبةهيأحدالمفاهيمالأساسيةفيالرياضياتالتيتمتدجذورهاإلىحلالمعادلاتالتيلايوجدلهاحلفيمجموعةالأعدادالحقيقية.فيهذاالدرس،سنتعرفعلىماهيةالأعدادالمركبة،وكيفيةتمثيلها،والعملياتالحسابيةالأساسيةالتييمكنإجراؤهاعليها.

شرحدرسالأعدادالمركبة

ماهيالأعدادالمركبة؟

العددالمركبهوعدديمكنالتعبيرعنهبالصيغة:
[z=a+bi]
حيث:
-(a)و(b)هماعددانحقيقيان.
-(i)هيالوحدةالتخيلية،وتحققالمعادلة(i^2=-1).

شرحدرسالأعدادالمركبة

يُطلقعلى(a)اسمالجزءالحقيقيللعددالمركب،بينمايُسمى(b)الجزءالتخيلي.

شرحدرسالأعدادالمركبة

تمثيلالأعدادالمركبة

يمكنتمثيلالأعدادالمركبةبعدةطرق،منها:

شرحدرسالأعدادالمركبة
  1. التمثيلالجبري:(z=a+bi)
  2. التمثيلالهندسي:يُمكنتمثيلالعددالمركبكنقطةفيالمستوىالإحداثي(مستوىالأعدادالمركبة)،حيثيمثلالمحورالأفقيالجزءالحقيقيوالمحورالرأسيالجزءالتخيلي.

العملياتالأساسيةعلىالأعدادالمركبة

1.الجمعوالطرح

لجمعأوطرحعددينمركبين،نجمعأونطرحالأجزاءالحقيقيةوالتخيليةبشكلمنفصل:
[(a+bi)+(c+di)=(a+c)+(b+d)i]
[(a+bi)-(c+di)=(a-c)+(b-d)i]

شرحدرسالأعدادالمركبة

2.الضرب

يتمضربعددينمركبينباستخدامخاصيةالتوزيعومراعاةأن(i^2=-1):
[(a+bi)\cdot(c+di)=ac+adi+bci+bdi^2=(ac-bd)+(ad+bc)i]

شرحدرسالأعدادالمركبة

3.القسمة

لقسمةعددينمركبين،نضربالبسطوالمقامفيمرافقالمقاملإزالة(i)منالمقام:
[\frac{ a+bi}{ c+di}=\frac{ (a+bi)(c-di)}{ c^2+d^2}]

شرحدرسالأعدادالمركبة

المرافقوالمعيار

  • المرافقالمركب:إذاكان(z=a+bi)،فإنمرافقههو(\overline{ z}=a-bi).
  • المعيار(القياس):هوالمسافةبينالنقطةالممثلةللعددالمركبوالأصلفيالمستوىالإحداثي،ويُحسببالعلاقة:
    [|z|=\sqrt{ a^2+b^2}]

تطبيقاتالأعدادالمركبة

تستخدمالأعدادالمركبةفيالعديدمنالمجالاتمثل:
-الهندسةالكهربائية(تحليلالدوائرالمتناوبة).
-الفيزياء(ميكانيكاالكم).
-معالجةالإشارات.

شرحدرسالأعدادالمركبة

الخلاصة

الأعدادالمركبةتوسعمفهومالأعدادالحقيقيةوتسمحبحلمعادلاتمثل(x^2+1=0).منخلالفهمأساسياتهاوتمثيلاتها،يمكنتطبيقهافيالعديدمنالمجالاتالعلميةوالتقنية.

شرحدرسالأعدادالمركبة